
On your workstation / coding computers, set up the git environment.

Add this to ~/.gitconfig

How to contribute code to
MCCE

MCCE Development Through
Github
Part 1. One-time set up

Identity:
$ git config --global user.name "<Your Name>"

$ git config --global user.email <your email>

Save credential for 6 hours:
$ git config --global credential.helper 'cache --timeout=21600'

Save credential permanently:
$ git config --global credential.helper store

Alias of showing git history:

[alias]

lg = log --graph --abbrev-commit --decorate --format=format:'%C(bold blue)%h%C(reset) -

%C(bold green)(%ar)%C(reset) %C(white)%s%C(reset) %C(dim white)- %an%C(reset)%C(bold

yellow)%d%C(reset)' --all

Github adopts personal access token to replace password authentication. In short, you need to use
a personal access token as password to push commits to github. See documentation
https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/creating-a-
personal-access-token

Be aware, once the token is created, you will not be able to see the token content any more. So
save the token in a safe place. If you have successully pushed a commit to github and used above
method to save credential permenently, the token is stored in ~/.git-credentials.

MCCE project at https://github.com/GunnerLab/Stable-MCCE hosts the current stable code of MCCE.
If you need to edit or add code, the recommended work flow is like this:

1. Log in github and go to https://github.com/GunnerLab/Stable-MCCE, create a fork the
repository so you have your own Stable-MCCE repository. This is a one-time set up.

2. All the local code developing should be performed in a develope branch and pushed to the
forked Stable-MCCE repo on github.

3. Once the code is done and tested, create a pull request from the forked Stable-MCCE repo
on github.

4. After receiving confirmation that your pull request had been merged to the master repo,
you can pull from the master repo to update your code and safely delete the develope
branches.

Clone a remote repo to local computer:

git clone <url>

Convert an existing local directory to local git repository:

Github access token

Part 2. Work with your own fork of MCCE
project

Part 3. Examples of Git commands
Clone a remote repo:

Convert a local directory:

https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/creating-a-personal-access-token
https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/creating-a-personal-access-token
https://github.com/GunnerLab/Stable-MCCE
https://github.com/GunnerLab/Stable-MCCE

git init

git add .

git add <file name>

git status

git commit -a -m "<commit message>"

git lg

It requires you set up the “lg” alias in ~/.gitconfig

git checkout -b <new branch> <commit hash>

<new branch> is a branch name you make.

<commit hash> is the string as reported by git log

If you want to make this branch as the new master branch, do a swap as following:

1. make sure your are in the new branch

$ git checkout <new branch>

2. force master to merge with current branch and use current branch as favored:

$ git merge -s ours master

Add all files to track:

Add a single file to track:

Check status:

Commit:

Show commit history:

Part 4. More on git branches
Create a new branch and revert to a past commit:

https://gunnerlab.github.io/Stable-MCCE/develop/#alias-of-showing-git-history

3. go to the master branch and reconcile again:

$ git checkout master

$ git merge <new branch>

4. after merge, delete the branch.

$ git branch -d <new branch>

git branch

git branch -r

git checkout <branch name>

git checkout -b <branch name>

git merge <another branch>

This will merge a branch to current branch:

git merge -s ours <another branch>

git branch -d <branch name>

git branch -D <branch name>

Show branches:

Show remote branches:

Switch between branches:

Create and switch branch:

Merge branches:

Merge with current favored:

Delete branches:

Force delete:

git remote -v

“origin” is the default name of your first remote.

git remote add <remote> <url>

git pull

Or

git pull <remote> <branch>

git push

git push -u <remote> <branch>

git push <remote> --delete <branch>

git remote prune <remote>

Often used on remote repo origin:

git remote prune origin

This command is useful to clean up the remote repository.

Part 5. Sync remote and local repository
Check remote repo:

Add more remotes:

Pull from remote repo:

Push to remote:

Push new local branch to remote:

Delete remote branch:

Delete remote tracking branch:

Part 6. Merge branches

Start a new feature:

$ git checkout -b new-feature

Edit some files, then commit the change:

$ git commit -a -m "Start a feature"

Edit some files, then commit more changes:

$ git commit -a -m "Finish a feature"

Merge in the new-feature branch:

$ git checkout master

$ git merge new-feature

$ git branch -d new-feature

When conflicts occur, the conflicting files will have visual marks like:

You need to edit text and remove <<<<<<, ======, >>>>>> lines.

Then run a commit:

Common scenario of merge:

Conflict in merge:

<<<<<<< master

conflicting text in receiving branch

=======

conflicting text in merging branch

>>>>>>> branch

$ git commit -a -m "<commit message>"

Revision #2
Created 8 March 2023 19:25:01 by Junjun Mao
Updated 24 March 2023 21:09:20 by Junjun Mao

