
Questions and Answers not directly related to MCCE

How to install WSL (Windows Subsystem Linux)
How to contribute code to MCCE

Other HOW-TOs

The official WSL installation instruction can be found on MIcrosoft website.
https://learn.microsoft.com/en-us/windows/wsl/install

The following is the my WSL installation on WIndows 10 Pro.

1. Open Powershell as Administrator, run
wsl --install

This installation will install Ubuntu under WSL.
2. Setting up user for Linux. After the reboot, WSL will ask for setting up the first user.
3. While wsl is open, right click on the penguine icon on task bar to pin it so that it is easy to

start wsl linux next time.

From WSL, to access the files on the host system (Windows 10), use the path /mnt/c for the C
drive.

From the host (Windows), to access the files on WSL, use the path \\wsl.localhost\Ubuntu

To check WSL version, run wsl -l -v under PowerShell.

To check Linux version, run cat /etc/issue under Linux

How to install WSL (Windows
Subsystem Linux)
How to install WSL (Windows
Subsystem Linux) and MCCE dev
tools
WSL

WSL Installation

https://learn.microsoft.com/en-us/windows/wsl/install

Linux under WSL uses a dynamic virtual disk. The virtual disk may be even larger than the physical
disk on the host. In my case, the virtual disk is 1TB while I only have a 500 GB disk:

The actual usage after initial installation is about 2 GB, and the host will host will allocate more
physical disk to it as needed.

However, once allocated, the virtual disk never shrinks. To shrink the virtual disk, I will need to do it
through PowerShell.

1. Open PowerShell as Adminostrator.
2. Shutdown wsl instance: wsl --shutdown
3. Run command

Optimize-VHD -Path C:\Users\Junjun\
Mao\AppData\Local\Packages\CanonicalGroupLimited.UbuntuonWindows_79rhkp1fndgsc\LocalState\

ext4.vhdx -Mode Full

WSL Virtual disk optimization

https://mccewiki.levich.net/uploads/images/gallery/2023-11/zopimage.png
https://mccewiki.levich.net/uploads/images/gallery/2023-11/fVEimage.png

Home directory: Add cd to the user .bashrc so the terminal window starts at the home
directory.
Update Linux:
sudo apt update

sudo apt upgrade
sudo apt install vim aptitude

Build essential
sudo aptitude install build-essential

1. Download miniconda Linux installer to wls ubuntu instance:
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh

2. Run the downloaded script to install miniconda, yes to initilization set up.
bash Miniconda3-latest-Linux-x86_64.sh

Exit and start terminal after installation to enter the conda environment.

conda install numpy scipy matplotlib pygraphviz pandas xlrd openpyxl

This is a little complicated. Currently PB solver delphi requires an old version of gfortran. That's the
reason we wanted to install a conda version of compiler. Since we will adopt the new delphi which
is compilable in C++, I decided to stick with the gcc from ubuntu OS.

Revert base to clean state:

Linux customization

Conda Python and Modules on WSL
Ubuntu
Miniconda

Python modules

Compilers:

Conda management

conda install --rev 0 --name base

conda clean --all

https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh

I am moving from Pycharm to Code due to

Pycharm crashes at the start on my desktop.
The ability of Code to code remotely vs ssh and wsl.

Under WIndows (not under WSL), install VS Code.

1. Download VS Code from https://code.visualstudio.com/
2. Run the installer, select default set up options.
3. If WSL was installed before VS Code, the first launch of VS Code will prompt for WSL

extension installation. Install this extension.

WSL extension can be installed from extension market, which can be activated by CTRL+Shift+X.

To connect to WSL, click the remote icon at the bottom left screen, choose connect to WSL.

In order to run X11 applications, Python plot and ssh -X for example, you need an X11 library under
WSL.

Install X11 and test apps

sudo apt install x11-apps

Run xclock to test.

Pymol is a molecular structure viewer. I believe one can install Pymol either from conda or from
Ubuntu apt package.

Microsoft Visual Studio Code

VS Code installation

VS Code WSL extension

Other software under WSL
Install Xserver for Graphic User Interface

Pymol

https://code.visualstudio.com/

To install under conda:

 conda install -c conda-forge -c schrodinger pymol-bundle

I experienced conda version Pymol crashes, so I installed a Ubuntu Pymol package. Since conda
apps precedes ubuntu apps under conda environment, the two Pymols can be both installed.

conda deactivate
sudo aptitude install pymol

On your workstation / coding computers, set up the git environment.

Add this to ~/.gitconfig

How to contribute code to
MCCE
MCCE Development Through
Github
Part 1. One-time set up

Identity:
$ git config --global user.name "<Your Name>"

$ git config --global user.email <your email>

Save credential for 6 hours:
$ git config --global credential.helper 'cache --timeout=21600'

Save credential permanently:
$ git config --global credential.helper store

Alias of showing git history:

[alias]

lg = log --graph --abbrev-commit --decorate --format=format:'%C(bold blue)%h%C(reset) -

%C(bold green)(%ar)%C(reset) %C(white)%s%C(reset) %C(dim white)- %an%C(reset)%C(bold

yellow)%d%C(reset)' --all

Github adopts personal access token to replace password authentication. In short, you need to use
a personal access token as password to push commits to github. See documentation
https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/creating-a-
personal-access-token

Be aware, once the token is created, you will not be able to see the token content any more. So
save the token in a safe place. If you have successully pushed a commit to github and used above
method to save credential permenently, the token is stored in ~/.git-credentials.

MCCE project at https://github.com/GunnerLab/Stable-MCCE hosts the current stable code of MCCE.
If you need to edit or add code, the recommended work flow is like this:

1. Log in github and go to https://github.com/GunnerLab/Stable-MCCE, create a fork the
repository so you have your own Stable-MCCE repository. This is a one-time set up.

2. All the local code developing should be performed in a develope branch and pushed to the
forked Stable-MCCE repo on github.

3. Once the code is done and tested, create a pull request from the forked Stable-MCCE repo
on github.

4. After receiving confirmation that your pull request had been merged to the master repo,
you can pull from the master repo to update your code and safely delete the develope
branches.

Clone a remote repo to local computer:

git clone <url>

Convert an existing local directory to local git repository:

Github access token

Part 2. Work with your own fork of MCCE
project

Part 3. Examples of Git commands
Clone a remote repo:

Convert a local directory:

https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/creating-a-personal-access-token
https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/creating-a-personal-access-token
https://github.com/GunnerLab/Stable-MCCE
https://github.com/GunnerLab/Stable-MCCE

git init

git add .

git add <file name>

git status

git commit -a -m "<commit message>"

git lg

It requires you set up the “lg” alias in ~/.gitconfig

git checkout -b <new branch> <commit hash>

<new branch> is a branch name you make.

<commit hash> is the string as reported by git log

If you want to make this branch as the new master branch, do a swap as following:

1. make sure your are in the new branch

$ git checkout <new branch>

2. force master to merge with current branch and use current branch as favored:

$ git merge -s ours master

Add all files to track:

Add a single file to track:

Check status:

Commit:

Show commit history:

Part 4. More on git branches
Create a new branch and revert to a past commit:

https://gunnerlab.github.io/Stable-MCCE/develop/#alias-of-showing-git-history

3. go to the master branch and reconcile again:

$ git checkout master

$ git merge <new branch>

4. after merge, delete the branch.

$ git branch -d <new branch>

git branch

git branch -r

git checkout <branch name>

git checkout -b <branch name>

git merge <another branch>

This will merge a branch to current branch:

git merge -s ours <another branch>

git branch -d <branch name>

git branch -D <branch name>

Show branches:

Show remote branches:

Switch between branches:

Create and switch branch:

Merge branches:

Merge with current favored:

Delete branches:

Force delete:

git remote -v

“origin” is the default name of your first remote.

git remote add <remote> <url>

git pull

Or

git pull <remote> <branch>

git push

git push -u <remote> <branch>

git push <remote> --delete <branch>

git remote prune <remote>

Often used on remote repo origin:

git remote prune origin

This command is useful to clean up the remote repository.

Part 5. Sync remote and local repository
Check remote repo:

Add more remotes:

Pull from remote repo:

Push to remote:

Push new local branch to remote:

Delete remote branch:

Delete remote tracking branch:

Part 6. Merge branches

Start a new feature:

$ git checkout -b new-feature

Edit some files, then commit the change:

$ git commit -a -m "Start a feature"

Edit some files, then commit more changes:

$ git commit -a -m "Finish a feature"

Merge in the new-feature branch:

$ git checkout master

$ git merge new-feature

$ git branch -d new-feature

When conflicts occur, the conflicting files will have visual marks like:

You need to edit text and remove <<<<<<, ======, >>>>>> lines.

Then run a commit:

Common scenario of merge:

Conflict in merge:

<<<<<<< master

conflicting text in receiving branch

=======

conflicting text in merging branch

>>>>>>> branch

$ git commit -a -m "<commit message>"

