Microstate Analysis
Library

Documentation and examples using the microstate analysis library

e Microstate Analysis Library Reference



Microstate Analysis Library
Reference

Microstate Analysis Library
Reference

Import library

Suppose the ms_analysis.py is in the current working directory or the Python site-packages
directory.

from ms_analysis import *

Global constants

Once the library is loaded, two global constants (at temperature 298.15 K) are available:

ph2Kcal: Convert ph unit to Kcal/mol
Kcal2kT: Convert Kcal/mol to kT

Load a microstate file

Go to a working directory. The essential files for microstate analysis are:

e head3.Ist file
e ms_out folder that contains Monte Carlo sampling microstate output

You need to specify which file to load, such as ms_out/pH5eHOms.txt. The name indicates the pH
and Eh condition.



A monte carlo object is reqired to be initialized to hold the microstates with Mc()
Finally, read the data into the object with readms() method.

Example:

cd ~/ms_analysis/4lzt
msfile = "ms out/pH5eHOms. txt"
mc = MC()

mc. readms(msfile)

Load partial Monte Carlo results. A Monte Carlo sampling is carried out 6 times and is numbered as
0,1, 2, ..., 5. One can choose to load some of them:

mc. readms(msfile, MC=[1, 2])

Data structure:

Conformer:

Conformer is a class object.

Variables:

iconf: Integer - index of conformer, starting from 0
confid: String - conformer name as in head3.Ist
resid: String - unique residue name including name, chain ID and sequence number

crg: Float - net charge

Microstate:

Microstate is a class object.

Variables:

e stateid: String - compressed and encoded string to identify a microstate

e E: Float - microstate energy
e count: Integer - how many times this microstate is accepted

Function:



e state(): return a microstate, which is a list of selected conformers

Charge_Microstate:

Charge_Microstate is a class object. If we only care about residue ionization, we can reduce
conformer microstates to charge microstates.

Variables:

e crg_stateid: String - compressed and encoded string to identify a charge microstate
o average_E: Float - average charge microstate energy
e count: Integer - how many times this charge microstate is accepted

Function:

e state(): return a charge microstate, which is a list of net charges, in the same order of
free residues

Subset_Microstate:

Subset Microstate is a class object. If we only care about a selected group of residues, we can
group microstates based on the conformer selection of these residues only.

Variables:

o subset_stateid: String - compressed and encoded string to identify a subset microstate
e average_E: Float - average subset microstate energy
e count: Integer - how many times this subset microstate is accepted

Function:

e state(): return a subset microstate, which is a list of selected conformers of interested
residues

Free res:

Free_ress is a class object. It holds information of a free residue.

Variables:

e resid: String - residue identification name
e charges: list of floating point numbers - a list of charge choices



MC:

MC is a class object. It holds information of a Monte Carlo microstates output.

Variables:

e T: Float - Monte Carlo sampling temperature

e pH: Float - Monte Carlo sampling pH

e Eh: Float - Monte Carlo sampling Eh

e method: String - This indicates the microstates output is from either Monte Carlo
sampling or Analytical Solution

e counts: Integer - Total number of Monte Carlo steps

e conformers: A list of Conformer objects that matche the entries in head3.Ist

o iconf_by confname: A dictionary that returns conformer index number from conformer
name

o fixedconfs: A list of fixed confomer index numbers

o free_residues: A list of conformer groups (each group is a list of conformer indicies) that
make up free residues

o free_residue_names: A list of free residue names

e microstates: A list of Microstate objects. They are accepted microstates.

Function:

e readms(fname, MC=[]): read microstate output file and return a list of microstates. You
can optionally choose what parts of Monte Carlo output to load. MC=[] means to choose
all. MC=[1,2] means to choose 1st and 2nd MC runs. The valid numbers are from 0 to 5.

o get_occ(microstates): Convert a list of microstates to occupancy. It reads in a list of
conformers and returns a list of occupancy (0.0 to 1.0) numbers on each conformer.

This function does not work on charge microstates or subset microstates.

o confnames_by_iconfs(iconfs): Convert a list if conformer indices to a list of conformer
names.

o select_by conformer(microstates, conformer_in=[]): Select from given microstates if
confomer is in the list. Return all if the list is empty. The input conformer _in is a list of
conformer names.

o select_by energy(microstates, energy_in=[]): Select from given microstates if the
microstates' energy is within the range defined by energy in. energy_in should be given
an array with lower bound (inclusive) and a higher bound (exclusive).

e convert_to charge_ms(): Convert all microstates to a list charge microstate objects.

e convert_to_subset_ms(res_of _interest): Convert all microstates to a list subset
microstate objects. The input res_of interest is a list of residues of interest, in the form of
residue names. These residues have to be free residues.



Functions:

get _erange(microstates)

Get the energy range of given microstates.

Input:

e microstates: A list of microstates object

Output:

A list of two numbers that are lower bound and higher bound of energey

bin_mscounts_total(microstates, nbins=100, erange=[])

Divide microstates into bins based on energy and get the counts of total steps in each bin.

Input:

e microstates: A list of microstates object
e nbins: the number of desired bins. Default value is 100
e erange: custom energy range. It is a list of lower bounds of bins

Output:

It returns two lists. The first list is the energy range in the form of lower bounds. The second
list is number of microstate counts of each bin.

bin_mscounts_unique(microstates, nbins=100, erange=[])

Divide microstates into bins based on energy and get the counts of unique microstates in each bin.

Input:

e microstates: A list of microstates object
e nbins: the number of desired bins. Default value is 100
e erange: custom energy range. It is a list of lower bounds of bins

Output:



It returns two lists. The first list is the energy range in the form of lower bounds. The second
list is number of microstate counts of each bin.

get _count(microstates)

Divide microstates into bins based on energy and get the counts of unique microstates in each bin.

Input:

e microstates: A list of microstates object
e nbins: the number of desired bins. Default value is 100
e erange: custom energy range. It is a list of lower bounds of bins

Output:

It returns two lists. The first list is the energy range in the form of lower bounds. The second
list is number of microstate counts of each bin.

average_e(microstates)

Calculate the average energy of given microstates.

Input:

e microstates: A list of microstates object

Output:

Average energy.

Code and example:

e Library: ms_analysis.py

e Demo: demo.ipynb


https://mccewiki.levich.net/attachments/2
https://mccewiki.levich.net/attachments/1

