
Documentation and examples using the microstate analysis library

Microstate Analysis Library Reference

Microstate Analysis
Library

Suppose the ms_analysis.py is in the current working directory or the Python site-packages
directory.

Once the library is loaded, two global constants (at temperature 298.15 K) are available:

ph2Kcal: Convert ph unit to Kcal/mol
Kcal2kT: Convert Kcal/mol to kT

Go to a working directory. The essential files for microstate analysis are:

head3.lst file
ms_out folder that contains Monte Carlo sampling microstate output

You need to specify which file to load, such as ms_out/pH5eH0ms.txt. The name indicates the pH
and Eh condition.

Microstate Analysis Library
Reference
Microstate Analysis Library
Reference

Import library

from ms_analysis import *

Global constants

Load a microstate file

A monte carlo object is reqired to be initialized to hold the microstates with MC()

Finally, read the data into the object with readms() method.

Example:

Load partial Monte Carlo results. A Monte Carlo sampling is carried out 6 times and is numbered as
0, 1, 2, ..., 5. One can choose to load some of them:

Conformer is a class object.

iconf: Integer - index of conformer, starting from 0
confid: String - conformer name as in head3.lst
resid: String - unique residue name including name, chain ID and sequence number
crg: Float - net charge

Microstate is a class object.

stateid: String - compressed and encoded string to identify a microstate
E: Float - microstate energy
count: Integer - how many times this microstate is accepted

cd ~/ms_analysis/4lzt

msfile = "ms_out/pH5eH0ms.txt"

mc = MC()

mc.readms(msfile)

mc.readms(msfile, MC=[1,2])

Data structure:
Conformer:

Variables:

Microstate:

Variables:

Function:

state(): return a microstate, which is a list of selected conformers

Charge_Microstate is a class object. If we only care about residue ionization, we can reduce
conformer microstates to charge microstates.

crg_stateid: String - compressed and encoded string to identify a charge microstate
average_E: Float - average charge microstate energy
count: Integer - how many times this charge microstate is accepted

state(): return a charge microstate, which is a list of net charges, in the same order of
free residues

Subset_Microstate is a class object. If we only care about a selected group of residues, we can
group microstates based on the conformer selection of these residues only.

subset_stateid: String - compressed and encoded string to identify a subset microstate
average_E: Float - average subset microstate energy
count: Integer - how many times this subset microstate is accepted

state(): return a subset microstate, which is a list of selected conformers of interested
residues

Free_ress is a class object. It holds information of a free residue.

resid: String - residue identification name
charges: list of floating point numbers - a list of charge choices

Charge_Microstate:

Variables:

Function:

Subset_Microstate:

Variables:

Function:

Free_res:

Variables:

MC is a class object. It holds information of a Monte Carlo microstates output.

T: Float - Monte Carlo sampling temperature
pH: Float - Monte Carlo sampling pH
Eh: Float - Monte Carlo sampling Eh
method: String - This indicates the microstates output is from either Monte Carlo
sampling or Analytical Solution
counts: Integer - Total number of Monte Carlo steps
conformers: A list of Conformer objects that matche the entries in head3.lst
iconf_by_confname: A dictionary that returns conformer index number from conformer
name
fixedconfs: A list of fixed confomer index numbers
free_residues: A list of conformer groups (each group is a list of conformer indicies) that
make up free residues
free_residue_names: A list of free residue names
microstates: A list of Microstate objects. They are accepted microstates.

readms(fname, MC=[]): read microstate output file and return a list of microstates. You
can optionally choose what parts of Monte Carlo output to load. MC=[] means to choose
all. MC=[1,2] means to choose 1st and 2nd MC runs. The valid numbers are from 0 to 5.
get_occ(microstates): Convert a list of microstates to occupancy. It reads in a list of
conformers and returns a list of occupancy (0.0 to 1.0) numbers on each conformer.

This function does not work on charge microstates or subset microstates.

confnames_by_iconfs(iconfs): Convert a list if conformer indices to a list of conformer
names.
select_by_conformer(microstates, conformer_in=[]): Select from given microstates if
confomer is in the list. Return all if the list is empty. The input conformer_in is a list of
conformer names.
select_by_energy(microstates, energy_in=[]): Select from given microstates if the
microstates' energy is within the range defined by energy_in. energy_in should be given
an array with lower bound (inclusive) and a higher bound (exclusive).
convert_to_charge_ms(): Convert all microstates to a list charge microstate objects.
convert_to_subset_ms(res_of_interest): Convert all microstates to a list subset
microstate objects. The input res_of_interest is a list of residues of interest, in the form of
residue names. These residues have to be free residues.

MC:

Variables:

Function:

Get the energy range of given microstates.

microstates: A list of microstates object

A list of two numbers that are lower bound and higher bound of energey

Divide microstates into bins based on energy and get the counts of total steps in each bin.

microstates: A list of microstates object
nbins: the number of desired bins. Default value is 100
erange: custom energy range. It is a list of lower bounds of bins

It returns two lists. The first list is the energy range in the form of lower bounds. The second
list is number of microstate counts of each bin.

Divide microstates into bins based on energy and get the counts of unique microstates in each bin.

microstates: A list of microstates object
nbins: the number of desired bins. Default value is 100
erange: custom energy range. It is a list of lower bounds of bins

Functions:
get_erange(microstates)

Input:

Output:

bin_mscounts_total(microstates, nbins=100, erange=[])

Input:

Output:

bin_mscounts_unique(microstates, nbins=100, erange=[])

Input:

Output:

It returns two lists. The first list is the energy range in the form of lower bounds. The second
list is number of microstate counts of each bin.

Divide microstates into bins based on energy and get the counts of unique microstates in each bin.

microstates: A list of microstates object
nbins: the number of desired bins. Default value is 100
erange: custom energy range. It is a list of lower bounds of bins

It returns two lists. The first list is the energy range in the form of lower bounds. The second
list is number of microstate counts of each bin.

Calculate the average energy of given microstates.

microstates: A list of microstates object

Average energy.

Library: ms_analysis.py
Demo: demo.ipynb

get_count(microstates)

Input:

Output:

average_e(microstates)

Input:

Output:

Code and example:

https://mccewiki.levich.net/attachments/2
https://mccewiki.levich.net/attachments/1

